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Abstract. As a continuation of a previous investigation, the exterior differential formulae 
for non-Abelian anomalies are derived within the reformulated path integral scheme, and 
a number of differential geometric objects are traced out reversely. With the help of these 
objects, a compact form for the gauged Wess-Zumino effective action induced by finite 
chiral transformation is also derived in the path integral formalism. 

1. Introduction 

In a previous paper (Wang and Ni 1987, hereafter referred to as I ) ,  we presented a 
new formulation of a path integral scheme for applying Fujikawa’s idea on deriving 
chiral anomaly (Fujikawa 1979, 1980, 1986) to more general Abelian and non-Abelian 
cases with ys coupling in 2 n  dimensions. Here, based on this reformulated path integral 
scheme, we are going to exhibit the detailed derivation of the more compact formulae 
for chiral anomaly in exterior differential forms which usually appear in the literature 
of the geometric approach (see, for example, Zumino et a1 1984, Kawai er a1 1984, 
Alvarez-GaumC and Ginsparg 1984, 1985, Jackiw 1985). Within this path integral 
formalism we also make some investigations into the Wess-Zumino effective action 
which was originally derived by Witten (1983) on the basis of topological considerations 
and later constructed by some authors in a purely differential geometric way (Kawai 
er a1 1984, Chou et a1 1984, Ingermanson 1985, Maries 1985). As is well known, the 
differential geometric approach concerning the mathematical structure of non-Abelian 
anomalies is a powerful non-perturbative method. However, we can still pose ourselves 
the following questions. ( a )  Can we derive these exterior differential expressions for 
anomalies using a path integral method? ( b )  How can we investigate the Wess-Zumino 
action within a path integral scheme? In short, is it possible to find a theory which 
may provide us with a connection between path integral derivation and differential 
geometric technique? We will try to answer these questions in this paper. We will 
also show that all the objects which appeared in the usual procedure from Chern 
character to Chern-Simons for deriving anomalies in a differential geometric approach 
can now be traced out reversely in our formalism of path integral. The organisation 
of this paper is as follows. In § 2, some key points and main results of this reformulated 
path integral scheme are reviewed. In § 3, starting with a general formula obtained in 
I,  the derivations of the exterior differential formulae for the chiral anomaly in the 
case of chiral gauge coupling and the gauge anomaly are exhibited in detail. In 0 4, 
the differential geometric objects such as topological invariant u2,,+, forms for 
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anomalies and Bardeen counter-terms are traced out systematically. In 5 5 the treat- 
ments of finite chiral transformation in this reformulated path integral scheme are 
explained in detail and thereby the Wess-Zumino effective action is derived in a 
compact manner. 

2. The reformulated path integral scheme for deriving chiral anomalies 

The phenomenon where a symmetry with its related conserved current inferred by 
Noether's theorem at the classical level is spoiled by the procedure of quantisation is 
generally referred to as anomaly. The basic observation of the path integral approach 
to the chiral anomaly is that the path integral measure is non-invariant under chiral 
transformation (Fujikawa 1979, 1980a, b, 1986). In this section, we give a short 
illustration about the reformulated path integral scheme presented in I by considering 
the general fermion field theory with ys coupling defined in 2n-dimensional Euclidean 
space 

where 

i0 = i(a + X + Ay5) 
V =  VZA" A = A ; A "  

with V:, A i  being external gauge fields, A "  the anti-Hermitian generator of G and 
d p (  +) the path integral measure 

=n  % W W ( x ) .  (2.4) 
X 

2.1. Anomalous factor 

As noted by Fujikawa, the measure (2.4) is non-invariant under the infinitesimal chiral 
transformation specified by p (x)  = p a  (x)A 

and exp f ir@) as the anomalous factor with 
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we would have an equality 

W (  V, A )  = e x p ( W P ) )  W (  V, A, P I .  (2.10) 

D,(~Y*Y~"$,) = G"(x).  (2.11) 

Expanding (2.10) in powers of P"(x) ,  one obtains the anomalous axial current identity 

Equation (2.10) leads to an expression for the anomalous factor as the ratio of two 
fermion determinants 

(2.12) 

Furthermore, after s steps of infinitesimal chiral transformation, the equality (2.10) 
becomes 

where 

(2.14) 

(2.20) 
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(2.21) 

(2.23) 

with iSOn(P1,. . . , P r )  shown as (2.22). Note that, as pointed out in I, expression (2.22) 
is correct even for the zero diagonal elements. What we wish to stress here is that, 
although the similar mapping relations (2.1 8) were familiar in previous literature, the 
phase factors exp(i0,) were often overlooked. In fact, it is the accumulating effect of 
this additional argument change which leads to the appearance of the anomaly. 

2.3. The null space regularisation scheme and a general formula for chiral anomaly 

We also explored in I the topological implication of Wess-Zumino consistent conditions 
(Wess and Zumino 1971) which impose on these additional phase factors. Let A, be 
the coboundary operator. One then finds that the argument change of non-zero diagonal 
element Se, (P)  obeys A, S&(p)  = 0 trivially, whereas for zero diagonal element A, 
SO,@) = *27r, the sign '5' depends on the chirality of the zero mode of iB or ( i0) ' .  
Considering this 1-cocycle property, we proposed a new regularisation scheme with 
only the argument change of zero diagonal elements preserved. This null space 
regularisation scheme was realised by the following expressions: 

where 

(2.24) 

(2.25) 

with c a path on complex z plane which bypasses the origin as shown in a figure in 
1. It should be pointed out that our regularisation scheme shown in (2.24) does satisfy 
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the Wess-Zumino consistency conditions. After a careful calculation we arrive at a 
general formula for the regularised 8I‘(p) 

1 “  S I ‘ ( V , A ; p ) = -  B ( m + l , n + l )  
( 4 a ) ” n !  ,,,=o 

xTr { P Y 5 7  (2il [ * d2” I ,  + I 2 =  1 m + n (QkQi+Q!!Q$)] 7=0 } 

r ( m + l ) I ‘ ( n + l )  
q u = a [ Y , ,  Y Y I  1 ‘ ( m + n + 2 )  ’ 

B ( m + l ,  n + l ) =  

(2 .26)  

(2 .27)  

( 2 . 2 8 )  

(2 .29)  

As an example, the Bardeen anomaly in four-dimensidnal Euclidean space is (Bardeen 
1969) 

1 
ST( V, A ;  p )  = - - ~ T ~ { ~ ( ~ ) E , , ~ ~ [ F : ~ ) F ~ ~ ) + ~ F E ) F ~ ~ ) + + A  P A A  P U  A 

4 a  

-$( F$,’ApAu + ApFIz(’Au + A , A , F b ~ ’ ] } .  (2 .30)  

3. The exterior differential formulae for non-Abelian anomaly 

As a continuation of previous investigations we are going to derive the more compact 
formulae for non-Abelian anomalies based on the general result (2 .26) .  

3.1. Bardeen anomaly in the case of chiral gauge coupling 

The Dirac operator in the case of chiral gauge coupling is 

iB = ia + iN+)$( 1 + y s ) .  

Being a special case with 

V = A  =+A:’ , ,  
the Q* in (2 .27)  becomes 

QL = FC’u,,p^, + z&”y5 

where 

F:ty) = a , A ~ ” - d J I ~ ’ + [ A ~ ’ ,  A‘,”] 

p^* = f ( l *  Y d .  

( 3 . 2 )  

( 3 . 3 )  

(3 .4)  

( 3 . 5 )  
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We observe that only the terms (Q$Q!?+ QI'Q?) in the summation of the formula 
(2.26) with n s I, + 12s 2n may have contributions to ST. Other terms such as I ,  + I ,  > 2n 
or 0 s I ,  + I, < n will drop out under the combined operations of 

TrPy,(*) and S12=o 
so one has the following equivalent expression (Gipson 1986): 

(3.9) 

We recall the integral form of beta function in (2.26) 
r i  

B ( m + l , n + l ) =  J s " ( 1 - s ) " d s  (3.10) 
0 

which implies that the operation 

1 d2" 
(2m)! * lz=o 

in (3.9) is equivalent to the substitution of (1 -s)"' for zZm. One can easily derive an 
expression for the summation of the first term in (2.26) as 

(3.11) 
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where 

Fr: = F z  - ( I  - s)[A:', A y ' ]  

= d , A ~ , + ' - d ~ r ' + s [ A ~ ' ,  Ay'] .  

Now, we adopt the notation of exterior differential form: 

A =  A, d x p  

As SA Fs=dAs+A: 

F = iFPy d x p  A dx" 

and recast the expression (3.11) into 

or in more compact form 

1' ds (  1 - s)  Tr{P dP(A"', F' , f ' " - ' ) )  
(27ri)"(n - l ) !  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

where €"(A, ,  A 2 , .  . , , An)  is the symmetrised product, [A, up] is understood as [A, top]+ 
for P odd or [A, t op] -  for P even. With similar treatment to that shown above, one 
may find that the summation of the second term in (2.26) makes the same contribution. 
Therefore the final result of the Bardeen anomaly in the case of chiral gauge coupling 
can be expressed in exterior differential forms as 

For 2n = 4, one has 

(3.17) 

1 
6r (A '+ ' ,  p )  =-Tr{P d(A"' dA(+ '+ iA(+)3  1). (3.18) 

127r2 

If the Dirac operator takes the form 

i@ = ia +id-"( 2 1 - Y J  

the result of the Bardeen anomaly becomes 

(3.19) 

(3.20) 

3.2. The Gross-Jackiw anomaly 

The investigation of the Gross-Jackiw anomaly within the path integral scheme may 
proceed following the same line as described in § 2. Consider the Dirac operator 
shown as (3.1). By using the notation of Alvarez-GaumC and Ginsparg (1984, 1985) 
it can be rewritten as 

i 0  = ia- + i 0 +  (3.21) 

where 

ia- = iaf( 1 - y 5 )  i 0 +  = i(a +A"+')t( 1 + y 5 ) .  (3.22) 
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A [ + ) +  A") - - g ; ' ( A ' + ' +  d ) g +  (3.23) 

with 

g, = e c + ' x )  u+(x)  = u:(x)A" (3.24) 

where u:(x) are infinitesimal local parameters with A a the anti-Hermitian generators 
of gauge group G'+), the Dirac operator (3.21) transforms as 

iP+iP(u+) =id-+g; ' iP+g,.  (3.25) 

The fact that the classical gauge symmetry 

W(A"' )=  d F ( $ ) e x p  - I ( I  
# W(A"';  U + )  

is broken at the quamtum level implies 

d i m )  

We thus define the anomalous factor exp(-8r) induced by (3.24) as the ratio of two 
fermion determinants 

W ( A ' + ' ,  U,) det #(U+) 
W (  A'+')  d e t i 0  ' 

- - exp( -W( U + ) )  = (3.27) 

6r( U )  can be found by treating 6 i P  as a perturbation in the diagonalising representation 
of i P ,  here 

6 i P = i 0 ( ~ + ) - i 0  

= g i ' i P + g A  - iP+ 
= Lip,, U+]. (3.28) 

Let {4,,(x)}, {c&,(x)} be the complete sets of two Hermitian operators, i.e. 

[ ( i D ) ' ( i 0 ) 1 4 , , ( ~ )  = A24,(x) 

[ ( i ~ ) ( i 0 ) + 1 6 , ,  ( X I  = A 2 6,, ( X I  
(3.29) 

with mapping relations for A, # 0: 

( i P ) 4 n ( x )  = A n  exp(ien)6,,(x) 

( iD) ' i , (x)  = A, exp(-itt,)d,(x) 

and diagonalising expression 

(3.30) 

(3.31) 

Using the operators p** = $( 1 * ys ) ,  one easily finds the chiral projective mapping 
relations from (3.30): 

(3.32) 
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where 

(3.33) 

Hence, to the first order of u"(x), the correction to any diagonal element of i0 due 
to S i p  shown in (3.28) can be derived with the help of (3.32) as 1 dx 6A(x)SiB4,(x) 

= I dx &(x)[ i0+,  u+l4,,(x) 

= 5 dx $ ( - I '  ,, ( x ) ( i 0 + ~ + ) 4 l ; " ( x )  - I dx 6~-"(x) (u+i0+)4( , f ) (x)  

= A,, exp(i8,) dx[~( , f"(x)u+~' , ' " (x)  - $!,-1t(x)u+6!,-'(x)] (3.34) I 
and the diagonal element of the Dirac operator (3.25) acquires a phase factor exp(i68,) 
with 

i68, = d x ( ~ ( , f ) t u + ~ ( , f ) - ~ ~ - ) t u + ~ ~ - l )  

(3.35) 

I 
= 1 dx[4Au+f(l+ y5)4,, - &u+81- ~ 4 6 ~ 1 .  

It should be pointed out that the above expression is also correct even for the zero 
diagonal elements. This can be easily proved by adding a term '&y5'  into i0 with the 
limit E + O  as mentioned in I. We thus find 

-6r( U+) = E i68, 
n 

(3.36) 

Since both (4,) and {&} are complete sets, the terms (Tr u+-Tr U+) appearing in 
(3.36) cancel each other and giving 

(3.37) 

Under the null space regularisation scheme as argued in I, the regularised 6r( U+) can 
be expressed as 

-6r(u+) = t[Tr u+r5f(& i 0 ) 1 <  independent+;ITr u + 7 5 f ( 5 ,  (iD)t)l< independent. (3.38) 
Here i0 is just the expression of (3.1). Therefore, the Gross-Jackiw anomaly under 
the infinitesimal gauge transformation (3.24) is similar to that of the Bardeen anomaly 
shown as (3.17) with only one difference of factor f. An unified formula of Gross-Jackiw 
anomalies for both operators (3.1) and (3.19) are thus derived within the path integral 
scheme as 

-sr(u,) = * Io' ds(1 -s) Tr(u, dP(A'", F y ) " - ' ) )  (3.39) (277i)'(n-l)! 

where g, =eu= E G(*)  and G(*' is the gauge group related to A'*'. 



1820 R-t Wang and G-j Ni 

In the case of gauge transformation along a path in the group space with the gauge 
group element g*(x, r )  E G"' specified by variables xp in spacetime and ri in group 
space, we have two exterior differentiations (Zumino 1985) 

which satisfy 

d 2  = S 2 =  d6 + 6d = 0. 

Denoting 

A, = g-'(A+ d ) g  U = g-' 6g 

(3.41) 

(3.42) 

one can express the anomalous factor of generating function induced by any piece of 
infinitesimal gauge transformation r i  + ri + d7, by 

(3.43) 

So, the result of Sr(A,) is simply equation (3.39) with A'*) understood as A:) and 
U* as g;'6g,. 

4. The topological invariant and uZn+, forms for non-Abelian anomalies 

Furthermore, one can trace out all the differential geometric objects based on formula 
(3.39) which we derived in the path integral formalism. One will also see in 9 5 that 
these objects are very useful for applying differential geometric techniques to the path 
integral derivation of anomalous effective action induced by finite chiral transformation. 

4.1. The topological invariants 

After defining 

w:,(A'*')=+(n+l)n s( l -s) t r{v*df(A'*) ,  F y ) " - ' ) }  (4.1) 

1 
(2.iri) "+'(n + I ) !  Kn+I = 

(3.39) becomes 

(4.2) 

(4.3) 

where S2" is a compactified 2n-dimensional Euclidean space. Let D2"+' be a (2n+ 
1)-dimensional disc whose boundary is dD2"+' = S'". One can rewrite (4.3) via Stokes' 
theorem as 

&U:,,( A'") I D',l+l I D 2 r ' + i  
dwi,(A(*') = wi,,(A(*') = (4.4) 

where 
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The last step in (4.4) follows from the fact that the result of trace is a singlet. It is 
easy to verify the Bianchi identities 

D s s  F'*'=O (4.6) 

and 

D ~ A  = dFs/dS.  (4.7) 

Defining again Lie algebra valued 1-forms in group space: 

U, = g ; ' k  g, E G'" 

it is also easy to verify the BRS transformation (Zumino 1985) 

s u ,  = -U: 

6A'*' = -du, - [U,, A'"] = - Du, . 

(4.8) 

(4.9) 

Here A(*) should be understood as A:', D as the covariant differentiations. With the 
aid of (4.6)-(4.9), one can show that 

D~w:,,( A'") = - S W ~ , , +  1 (A" ') (4.10) 

where 

W ~ , , + ~ ( A ' * ) ) =  k ( n +  1) d s  str(A'*', F y ) " )  Id (4.11) 

in which str is a symmetrised trace. Substituting (4.10), (4.11) and (4.4) into (4.3), one 
can write 

(4.12) 

where A2n+l(A'*)) is defined as 

A2n+i(A(*)) = K + i ~ 2 ~ + i ( A ( * ' )  (4.13) 

with K,+I and W ~ , , + ~ ( A ( * ) )  shown in (4.2) and (4.11). By observing 

dWZn+,(A(*') = tr F'*)"+' 

one finds 
dA2n+l(A(f ' )  = K n + l  tr F'r)n+l  

(4.14) 

which is just the (2n +2)-dimensional Atiyah-Singer index density (Atiyah and Singer 
1968). The detailed topological meaning of the 2n-dimensional non-Abelian anomaly 
and the (2n + 2) -dimensional index density has been discussed by Alvarez-GaumC and 
Ginsparg (1984). Here we derive this relation substantially within the path integral 
scheme. 
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For the more general Dirac operator shown in (2.2), one can rewrite it via chiral 

(4.15) 

projection as 

i@ = i(a + A"');( 1 + y s )  +i(B +A'-')$( 1 - y 5 )  

with 

A'*'= V I A .  (4.16) 

So, the combined topological invariant may be expressed as 

dAk;:l(A'+), A' - ) )  = Kn+l(tr  F'+'"+' - t r  p ' " + I  ) (4.17) 

or expressed in V - A  form: 

2"-' 
(4.18) L - R  - K f l + l  dA2n+l -- tr[y5(F(V'+F'A'y5)n+L].  

Here the Dirac matrices are taken to be 2" x 2" dimensions. 

4.2. The (2n + 1 )-forms for chiral anomaly 

From (4.13) we see that the (2n + 1) forms for gauge anomalies of the Dirac operator 
(4.15) in left-right formalism are simply 

(4.19) 

where and w ~ , , + ~  are shown in (4.2) and (4.11). As expressed in (4.12) and (4.18), 
A:;,!l is related both to the local index density and to the gauge anomaly. It is of 
great importance in the approach of the mathematical structure of anomalies. Now, 
we are in a position to derive an expression for (2n+l)-forms in V - A  formalism 
denoted by Arid( V, A).  Noting that the conservation of vector current in the V - A  
scheme implies the invariance of A;,: under the infinitestimal vector transformation. 
What we try to seek is a solution of the differential equations (see (4.18)) 

Aki:l(A'+' A(- '  1 = K n + l [ ~ ~ n + l ( A ' + ) )  + ~ 2 n + l ( A ' - ) ) I  

(4.20) dAr;J( V, A )  = ~ t r [ y 5 ( F ' v ' + F ' A ' y ~ ) " + ' ]  KnT1 

under the constraint 

s,A,",-,q( V, A )  = 0. (4.21) 

Here a = a " ( x ) A "  specifies a vector transformation element g = ea'x'. 
Since, for infinitesimal a " ( x )  one always has 

(4.22) 

g, = e'* U, = a ( x )  (4.23) 
the constraint (4.21) can be rewritten as 

S,+Arn<<(A'"+ A'-', A(+ ' -A' - '+  i3c-A~n><(A(+'+A(-', A'+'-A'-'  ) =o.  (4.24) 

One can derive A:;: by introducing two parameters S + ,  S-  in defining a (2n +2)-form 
as 

(4.25) K"+I 
2"+' A Z , , + ~ ( S + ,  S - )  =- tr(y5Fli1) 
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with 

Fz( S ,  , S - )  = d Z (  S ,  , S - )  + Z 2 (  S+ , S - )  

Z ( S + ,  s-) = s, w+ + S-  w- 
where 

W, = V* Ay, = A"'$( 1 * y s )  + A(-'$(l  y S ) .  

Using the following equalities: 

DZFZ = 0 

D ~ W ,  =aF,/aS, 

Dz(* )  = 4 * ) +  [Z, (*)I 
with Dz defined as 

one arrives at 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

or, more explicitly, 

~ S A ~ ~ + I ( S + ,  S - )  = Kn-1 F s t r [ y , ( ~ ,  ~ 2 1 1 .  (4.33) 

Here as is understood as ordinary variations of parameters S , .  It is easy to check 
that the constraint demands 

S + + S - = l .  (4.34) 

Since 

AZn+*(S+ = 1 ,  S-  = 0) = AZnt2(S+ = 0, S-  = 1 )  

1 
= K n + l  2"-' t r [y5(F 'V'+ F'A'y , )"+l ]  (4.35) 

one finds the integration must be carried out along a straight line from point P(1,O) 
to point Q(0 , l )  on the ( S + ,  S - )  plane. One obtains 

in which 

2 = [SA'+'+ (1 - s)A'-']f( 1 + 7,) + [SA'-' + ( 1  - s)A"']$( 1 - y s )  

Fz = dZ + Z 2 .  

(4.37) 

(4.38) 

Returning to variables ( V ,  A ) ,  one has 
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As an example for deriving the chiral anomaly from AYn;;, consider the case of 2n = 4, 
one easily finds from (4.39) 

(4.40) 1 
1257- 

Ay-"( V ,  A) =----;tr(3AFivi2+ A F ' A ' 2 - 4 A 3 F ' V ' + ~ A s ) .  

According to the definition for infinitesimal chiral transformation 

a,( V+ Ay,) = V+ Ay, + d )  ePy, - ( V+ Ay,) (4.41) 

one has 

and 

D v V =  FiV'+ VZ-AZ 

DVF"' = [ F'"', A] 

DvA = F'"' 

DVF'"' = [F"', A] 

(4.42) 

(4.43) 

where 

Dv = d ( * ) + [ V, ( * ) 1. 

6,Ar,:( V ,  A) = -dAin( V, A).  

(4.44) 

(4.45) 

The chiral anomaly can thus be obtained via the following relation: 

For 2n = 4, one gets 

6r( v, A) = 257i 5,. Ai(  v, A) 

1 
) + 8A4]} (4.46) 

which is just the Bardeen anomaly (2.30) in exterior differential forms (for example, 
Kawai and Tye 1984, Ingermanson 1985). 

-- - tr{@ [ FiA'*  + 3 F' 'I2 - 4( A z F c v ) +  AF"'A + F"'A2 
12TZ 

4.3. Bardeen counterterms 

Since both exterior derivatives of Ai;:] (4.18) and A:;: (4.20) are the same: 

1 
dA);!i =dA;;d = K,,, ~ t r [ y , ( F ' v ' + F i A ' y , ) n t ' ]  (4.47) 

one has 

A:;:, -A:;/ = dpz, (4.48) 

and express it as an integral along the closed triangle path on the ( S + ,  S-)  plane: 

(4.49) 
( n  + 1) 

dp2n = Kn+i- 2 n  fAOPQ str{ys(SsZ, F1)) 

with the points O(S+ = 0, S- = 01, P( 1 , O )  and Q(0,  1). Using (4.26)-(4.30), one derives 
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As an example, for 2n = 4, one easily finds the Bardeen counterterms p4(A(+) ,  A ' - ' )  as 

(4.51) 

5. The anomalous effective action induced by finite chiral transformation 

As pointed out in I ,  the reformulated path integral scheme is especially suitable for 
calculating the anomalous effective action induced by finite chiral rotation. Consider 
the following transformation: 

+o+ cL1 = exp(S(x)rsMo $o-+ 6, = q0 exp(t(x)r5)  (5.1) 

g=exp(5 (x )y5)EGxG ((x) = A"["(x). ( 5 . 2 )  

with 

A "  are anti-Hermitian generators of the group, ("(x) are finite scalar fields. For 
example, ["(x)A"Fr with F, = 9 3  MeV may be understood as T'A",  T" being pion 
fields in QCD. In our treatment, a parameter t is introduced with interval 0-1, that is 
to define 

* = ,- *o (5.3) $, E J0 ef5(x)r ,  

and to split the range 0-1 into N equal infinitesimal intervals d t (N+co) ,  the path 
integral method for successive chiral transformation described in § 2 can thus be 
applied. One can write the anomalous factor induced by any infinitesimal section of 
chiral transformation specified by t -$ t + dt  as 

where 

i 0( V,, A,  ) = i(8 + Y, + A, ) 
i0( V,, A, ;  dt  5(x)) exp(t(x)  dt) iD( V,, A , )  exp(l(x)  d t )  

v, + A y , =  exP(tS(x)Ys)(V+AY,+ d )  exp(tt(x)y,) .  

( 5 . 5 )  

(5.6) 

(5.7) 

with V,, A,  defined according to 

In the diagonalised representation of Dirac operator ( 5 . 5 )  which is comoving with 
parameter t ,  one can treat Si@( V,, A , )  as a perturbation 

Si0(V,,  A,)=iD(V, ,  A,;  dt ( (x) ) - iO(Vf ,  A , )  

= W( vt, A , ) ,  55x1 dt}. (5.8) 
By comparing it with (2.20), one finds 6,r( V,, A , )  in (5.4) can be obtained simply by 
replacing p, V, A in (2.26)-(2.28) with d t  ((x), V,, A,  respectively, i.e. 

- S , T ( V , , A , ) = I T r { d r ( ( x ) y ,  1 f B ( m + l ,  n + l )  
( 4 ~ )  n .  m =O 
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(5.10) 

(5.11) 

For example, 2n = 4, the Bardeen anomaly in differential forms shown in (4.46) should 
be rewritten as 

6,r( V,, A,) = 2 r i  A:( v,, A,) i,. (5.12) 

with 

1 
27riAi( V,, A,) =- tr{dt 5 [ F ~ A 1 2 + 3 F : V ’ Z - 4 ( A 2 F ~ V ) + A , F ~ V ) A ,  + FIV’A:)+8Af]}. 

1 2 r 2  
(5.13) 

In principle, the anomalous effective action Ywz which is referred to as the Wess- 
Zumino terms in some literature (Witten 1983, Ingermanson 1985, Maiies 1985) can 
be obtained by integrating over t .  But, actually, the t dependence of A,, V,, FIA’, FI”’ 
shown in (5 .7)  and (5.11) leads to complications. However, similar to (4.12), one can 
turn (5.9) into an integral over a disc D2”+’, i.e. 

6 , r (Vf,  Af)=2.rri 

(5.14) 

a 
~ , ( V , + Y ~ A , ) = ~ ~ [ ~ X P ( - [ ~ Y ~ ) ( V + A ~ , + ~ )  exp(t5ydI d t  

= r ( v, + A, Y5 + d 1 9  5YS1 d (5.16) 

one finds 8(drf) in (5.14) is equivalent to 6, and can rewrite (5.14) as 

(5.17) - 8 J (  V,, A,) = 2 r i  J v,, A,). 
D 2 , t + ‘  

Now the integration over t becomes very simple. I t  gives 

[A Y 2 (  v, = I , A, = 1 ) - A Y;4 ( v, =o , A, = 0) 1 (5.18) 
D2”’l 

-ywz = 2 r i  
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and the differential geometric technique can be easily applied in this calculation. First, 
one can write 

A rL- ( Vf = 1 , A, = i ) - A :LA ( Vt = o I At =o) = A ( g - I  dg, 0) + d R 2 n  ( Vr =o A, =o 8 ) 
(5.19) 

in which g = exp(t(x)ys) as shown in (5.2). This leads to 

rwz = r g: I + r r 
where 

5 A,",;t";(g-' dg, 0) rZn+l = 27ri wz 
Dz"+l  

(5.20) 

(5.21) 

(5.22) 

rF+, can be read off from (4.39). The explicit expression is 

(5.23) 
in  

(4r i )"n ! 
rg;, = -2 B ( n + l ,  n + l )  

rgz can be derived by applying Cartan's homotopy operator if (see, for example, 
Zumino 1983, Song 1986) the result is 

-Tgz=2.rri Is*,, l,Ar;$(V,,A,)l +27ri lS2,, ~ok*,Ar't";(V,=l, A ,= , ) .  

Here if is defined by 

, = I  

(5.24) 
r=o 

k*,9"( V,, A, ,  FIV', FjA')  = k,B( Vy, A:, FjV)', FIA") (5.25) 

with 

k,V:=O k,A: = 0 

k,F:")' = d s  V, k,FjAjS = ds  A, 

and the comoving interpolating fields 

v: = sv, A: = SA, 

(5.26) 

FI "Is = S F ~  v, - S(  1 - s)( V: + A:) (5.27) 

F j A " = ~ F ( I A ) - ~ ( l - ~ ) [  V,, A,]. 

One thus generalises the gauge Wess-Zumino effective action in V - A  formalism 
presented by Ingermanson (1985) to 2n-dimensional space. For 2n = 4, one has 

(5.28) 
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with 

WO Vo + F,=dWo+ Wi. (5.29) 

The anomalous action induced by finite chiral transformation (5.1) can also be 
turned into L-R formalism, but the Bardeen counterterms must be taken into consider- 
ation carefully. The final result of the gauged Wess-Zumino term can be expressed 

, , as in A(+)  A(-) = e 2 6 ( X ]  

TWZ(A'+', A'- ') =27ri P ~ ~ ( A ( + ) ,  A'-')+277i bZn(A(+),  U )  
s2" s'" 

A:;tR1(u-' du, 0) I D2"+l 
-27ri (5.30) 

in which pzn can be read off from (4.50), while b2,, is given by 

b2,, = ( n  + l ) n  Io' dS+ Io'--'+ dS- str{(u du-')A(+)F2-'} (5.31) 

with 

2 = S+A'+'+ S-U du- '  F i  = d i  + 2' (5.32) 

and A);:,(u-' du,O) can be read off from (4.19), (4.11) and (4.2), i.e. 

A);:l(u-' du,O) =( - l )"K,+ ,B(n+l ,  n + l ) ( n + l )  t r (u-1du)2n+' ,  

This result coincides with that of Maftes (1985) where the gauged Wess-Zumino action 
is constructed in a differential geometric way. 

6. Summary 

The discussions made in I and this paper show the following characters of this 
reformulated path integral scheme for deriving anomalies. 

(i) We adopt a comoving representation of the Dirac operator, in which the 
anomalous factor can be understood as the product of the additional phase factors of 
the diagonalised matrix elements acquired under chiral rotation and gauge transforma- 
tion, and the anomalous effective action can be regarded as an accumulating effect of 
the additional argument change of these elements. 

(ii) The Wess-Zumino consistent conditions which imposed on the anomalous 
factor implies that only the arguments of the zero modes have non-trivial topological 
contributions to the anomaly. This leads to the null space regularisation scheme in 
which only the argument change of the zero modes is preserved. 

(iii) Both Hermitian and non-Hermitian Dirac operators can be treated on equal 
footing. Likewise, both chiral anomaly and gauge anomaly can be derived in the same 
way. 

(iv) We can also derive the exterior differential rormula of anomalies within this 
scheme. Therefore, the differential geometric objects and techniques can be naturally 
applied to the investigation of gauged Wess-Zumino effective action in the path integral 
formalism. 

The readers may notice that the essence of our treatment lies crucially on the phase 
factor of the diagonalised matrix element for a Dirac operator. It is this phase factor 
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which plays the central role in this approach. We believe that it is closely related to 
the Berry phase (Berry 1984, Sonoda 1986) in the Hamiltonian interpretation of 
anomalies (Faddeev 1984, Faddeev and Shatashvili 1986). Nevertheless, further investi- 
gation is needed. 
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